A Complete Design Flow of a General Purpose Wireless GPS/Inertial Platform for Motion Data Monitoring

Gianluca Borgese¹, Calogero Pace¹,*, Luigi Rizzo², Giuseppe Artese³, Michele Perrelli³, Roberto Beneduci⁴

¹Department of Computer Engineering, Modeling, Electronics and Systems Science (DIMES), University of Calabria, Arcavacata di Rende (CS), 87036, Italy.
²AIEM s.r.l., Research & Development Area, Zumpano (CS), 87036, Italy.
³Department of Town-and-Country Planning, University of Calabria, Arcavacata di Rende (CS), 87036, Italy.
⁴Department of Physics, University of Calabria and INFN Gruppo c. Cosenza, Arcavacata di Rende (CS), 87036, Italy.

Received 03 December 2014; received in revised form 29 July 2015; accepted 30 July 2015

Abstract

This work illustrates a complete design flow of an electronic system developed to support applications in which there are the need to measure motion parameters and transmit them to a remote unit for real-time teleprocessing. In order to be useful in many operative contexts, the system is flexible, compact, and lightweight. It integrates a tri-axial inertial sensor, a GPS module, a wireless transceiver and can drive a pocket camera. Data acquisition and packetization are handled in order to increase data throughput on Radio Bridge and to minimize power consumption. A trajectory reconstruction algorithm, implementing the Kalman-filter technique, allows obtaining real-time body tracking using only inertial sensors. Thanks to a graphical user interface it is possible to remotely control the system operations and to display the motion data.

Keywords: GPS, Kalman filter, MEMS inertial sensors, wireless communication

References


*Corresponding author. E-mail: calogero.pace@unical.it


