Optical Flow Visualization Using the Modular Background-Oriented Full-Scale Schlieren Technique

Chung-Hwei Su1, Chien-Chih Chen2, Yu-Cheng Hung3, and Chen-Ching Ting4,*

1Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Taiwan.
2Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taiwan.
3Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taiwan.
4Dept. of Mechanical Engineering, National Taipei University of Technology, Taiwan.

Received 12 March 2014; received in revised form 08 April 2014; accepted 22 April 2014

Abstract

Background-oriented full-scale schlieren (BOFSS) with large test sections is a famous technique, specially developed for optical flow visualization. This article presents the technique using a modular background-oriented light source instead of the retroreflective method. The modular background-oriented light source is convenient to enlarge the area of the light source and providing a larger testing section, thus the test sections become flexible. Moreover, the article also focuses on investigating the BOFSS sensitivity with different percentages of cutoff grid. The setting composed of fluorescent lamp Philips-865, atomizing films, and linear grating mask. The linear grating mask is alternated with black lines with width of 6 mm. The area of light source and test section are 2×2 and 1×1 m2, respectively. The present study applies different percentages of cutoff grid to block light source, and 50, 60, 70, 80, and 90% percentages of cutoff grid are been tested. The test subjects are heat flux from burning candles and Bunsen burner, acetone gas flow, LPG flow and compressed butane gas. The results show that a cutoff grid with 90% of light blockage presented the best result for conventional Z-arrangement schlieren technique. Whereas, cutoff 60 percent light shows the best results for full-scale schlieren technique.

Keywords: full-scale schlieren, background-oriented light source, cutoff grid, atomizing film, grating mask

References

* Corresponding author. E-mail address: chchting@ntut.edu.tw
Tel.: +886227712171#2075

